
Extended Abstract

Motivation Deep RL methods for improving LLMs are emerging, with AI labs releasing RL-
finetuned models excelling at coding, math, and instruction-following through RLHF techniques
using preference datasets. This project emulated these successes by applying SFT, DPO, and GenRM
to a base LLM, primarily aiming to enhance instruction-following capabilities where models answer
general chat questions using pre-training knowledge.

Method We implemented three methodologies
Supervised Fine-Tuning (SFT): Uses standard next-token prediction but masks user prompts, applying
loss only to model responses. Training data comes from HuggingFaceTB/smol-smoltalk dataset.
Direct Preference Optimization (DPO): Refines the SFT model using human preference data from
HuggingFaceH4/ultrafeedback_binarized. Employs the Bradley-Terry model to learn from
preferred vs. dispreferred response pairs, with KL-divergence regularization to prevent overfitting.
Generative Reward Modeling (GenRM): Combines reward modeling with generation training in a
unified framework (used psr-ai/genrm-cot dataset). The model learns to both generate solutions
and verify their correctness using Chain-of-Thought (CoT) reasoning.
Key Innovation: An adaptive inference mechanism that dynamically samples between 8-32 verification
rationales based on prediction uncertainty. If variance in "Yes" token probabilities drops below 0.05,
sampling stops early. This allocates more compute to ambiguous cases while efficiently handling
clear examples, potentially improving both accuracy and inference speed compared to fixed sampling
approaches. The overall goal is creating a more accurate, efficient instruction-following model
through this progressive refinement process.

Implementation Implementation can be categoirized into three steps
Dataset Preparation: Used three datasets across stages: Smoltalk (multi-turn chat) for SFT with user
turn masking, Ultrafeedback-binarized (preference pairs) for DPO, and GenRM-CoT dataset with
added verification prompts ("Is this answer right?") and chain-of-thought reasoning ("Let’s verify
step by step").
Training and inference on validation: Built with PyTorch Lightning and HuggingFace tokenizers
using 98% train and 98% validation. Implemented mixed precision training (bf16 initially, then fp8
with Nvidia’s transformer-engine on H100s) and Distributed Data Parallel via Ray.io. Tested various
beta values for DPO optimization and lambda for GenRM CoT. Our main metrics while inference on
validation sets were edit distance, loss, winrate and verifier score.
Batch Inference Pipeline: Used VLLM for batch inference and Llama 3.1 Nemotron 70B Reward
Model via OpenAI API for win-rate evaluation against leaderboard prompts.

Results We calculated winrate against the Qwen/Qwen2.5-0.5B-Instruct, our SFT model got
38% winrate, DPO got 45% and GenRM CoT got 39%. We attributed lesser winrate of our extension
to generation of verifications even on prompts that did not require verifications. We concluded that
finetuning on chain of thought prior to GenRM CoT can improve the results.

Discussion Distributed training on H100s with DDP reduced training time by 10-fold, making
iterations feasible across different methods. The team used sanity-train and train-percentile parameters
to control dataset size and enable model overfitting for testing. After DPO training, models lacked
chain-of-thought reasoning by default since they weren’t trained on CoT datasets, which may have
caused a reduced winrate after GenRM CoT. Ray.io enabled centralized resource sharing across
teammates and cloud providers, though required local patches for Azure private images and disk
space issues. The team contributed a successful pull request to Ray.io that was merged within 8 days.

Conclusion Starting with a base model, SFT improved response quality by reducing cross-entropy
loss through imitation learning, aligning model weights to expert policies. Adding DPO further
enhanced performance with a 7-8% winrate increase over the Instruct model within few epochs,
effectively directing the model toward chosen over rejected outputs. However, the GenRM CoT
extension slightly decreased winrate, likely because the SFT+DPO model lacked inherent chain-of-
thought reasoning, causing repetitive outputs during verification training.

==

RL Fine-Tuning of Language Models with
GenRM-CoT

Prabhjot Singh Rai
CGOE

Stanford University
prabhjot@stanford.edu

Anirban Chatterjee
CGOE

Stanford University
ani1991@stanford.edu

Abstract

In this paper we have applied three different finetuning methods - SFT, DPO and
GenRM on an LLM to improve the accuracy for instruction tuning task. For
GenRM based extension we applied a CoT based augmentation to our training data
(with a modified loss function) and adaptive computation during inference time
to improve CoT efficiency. Based on our current experiments we observed that
DPO based method seems to perform better than any other techniques. We were
able to achieve a performance of 45% against Qwen 2.5 0.5B Instruct model using
SFT+DPO. Our model scored 15.7% accuracy in leaderboard using SFT+DPO and
12.7% using GenRM + CoT based method.

1 Introduction

Application of Deep RL methods to improve the capabilities of Large Language Models (LLMs)
is a newly emerging field and we have seen frontier AI labs releasing multiple versions of models
finetuned using RL methods which can successfully solve coding and math challenges, follow user
instruction and perform many other kinds of tasks. Majority of the successes can be categorized
broadly under RLHF (Reinforcement Learning under Human Feedback) where the model is trained
using a preference dataset to teach it what kind of output is expected against which kind of question.
In our project we tried to emulate the success by taking a base LLM model and applying multiple
different techniques including SFT, DPO and GenRM. Our primary objective was to improve the
capability of the model for instruction following where user asks a general question in chat format
and model tries to answer based on it’s existing knowledge from pre-training.

The main research question that our approach answers is whether, along with SFT and DPO, can the
inference metrics for an LLM be improved, specifically using the model as a verifier and using the
prediction probability of "Yes" and "No" tokens by this verifier.

2 Related Work

One of the most pertinent contributions in this area is Generative Verifiers: Reward Modeling as Next
Token Prediction [(11)]. This work introduces Generative Reward Modeling (GenRM), a paradigm
shift from conventional discriminative verifiers that assign numerical scores to evaluate reward.
Instead, GenRM reframes the task as a next-token prediction problem. This approach can operate
both with and without chain-of-thought (CoT) rationales and leverages the prediction probability of
"Yes" and "No" for correct and incorrect solutions respectively.

By leveraging the generative nature of large language models (LLMs), the authors show that GenRM
not only accommodates interpretable CoT rationales but also benefits from scalable inference-time

Stanford CS224R 2025 Final Report

improvements, such as majority voting across multiple sampled rationales. This marks a significant
contrast with traditional discriminative reward models, which rely on fixed scoring functions and do
not improve with additional inference effort.

Empirically, this work increases the performance of the model on Algorithmic Reasoning (∆ 5% to
45%), Grade School Math (∆ 73% to 93.4%), and Transfer to MATH (∆ 28% to 44.6%), surpassing
discriminative models, LLM-as-a-Judge, and DPO, achieving significant gains in Best-of-N accuracy.
The paper demonstrates that synthetic rationales can be sufficient for training, reducing dependence
on human-labeled data. A notable strength is the unification of generation and verification within a
single training objective, which enhances both capabilities via positive transfer.

A key advantage of this method lies in its precision: GenRM effectively identifies nuanced reasoning
errors in mathematical solutions that other verification models often overlook. In its basic form,
GenRM generates a "Yes" or "No" token to judge correctness, while the GenRM-CoT variant first
produces a detailed rationale before issuing the verdict—enhancing both interpretability and accuracy
of verification.

Figure 1: Sample-Efficient Scaling with Generative Verifiers

In the figure, we can see that the GenRM-CoT is sample efficient, specifically in transfer to MATH
using Best-of-N strategy. It demonstrates superior sample efficiency, solving more problems with
fewer solution candidates - 1.5x, 1.2x, and 6.4x more efficient for algorithmic reasoning, grade school
math and transfer to MATH, respectively. These gains highlight GenRM-CoT’s strength in reasoning,
generalization, and inference-time compute utilization.

2.1 Difference from related work

From what we understood, one of the key aspects of this paper is that there is a fixed number of
rationale that are sampled and averaged. We refined the inference time compute for GenRM-CoT as
a modification to address this limitation. Instead of using a fixed number of rationales, we compute
the rationales only when the variance is higher than a given number - thereby reducing the need to
sample more when the model is already performing well during sampling. The details of it have been
outlined in the method section under section 3.3.

3 Method

Our primary aim was to improve the accuracy of our model on the instruction following task. We
used Qwen 2.5 0.5B as our base LLM model and focused on three distinct methods for our finetuning
work.

3.1 Supervised Fine-tuning(SFT)

Supervised Fine-Tuning optimizes using same next-token prediction objective that is used in pre-
training. However, no loss is applied to the query tokens (by masking out user prompts). This
supervised learning objective is optimized over queries x and completions y that are drawn from an

2

expert distribution. The objective can be written as follows:

maxθEx,y∈D

|y|∑
t=1

logπθ (yt | x,y<t) , (1)

In this stage we used HuggingFaceTB/smol-smoltalk dataset to finetune our model.

3.2 Preference optimization using DPO

After obtaining a πref model using SFT in the first stage we moved on to improving the model quality
by using preference dataset from HuggingFaceH4/ultrafeedback_binarized. To fine-tune πref

with human preferences, usually a preference dataset Dpref = {x(i), y
(i)
w , y

(i)
l } is collected, where

x(i) denotes a prompt and y
(i)
w , y

(i)
l denote preferred and dispreferred responses, often obtained by

sampling from πref. Given a preference dataset, most fine-tuning pipelines assume the existence of
an underlying reward function r∗(x, ·). One popular framework for this is the Bradley-Terry (BT)
model (8), assuming that human preferences can be written as:

p∗(y1 ≻ y2|x) =
er

∗(x,y1)

er∗(x,y1) + er∗(x,y2)
(2)

Given this reward function r∗, preference fine-tuning aims to find the optimum of the reward r∗.
While the ultimate goal of preference fine-tuning is to find the unconstrained optimum of the reward
function, in practice, we often replace the reward function with a reward model. Since the reward
model is erroneous, we apply a KL-divergence constraint on the policy to prevent exploitation in the
reward model. To align our results with typical preference fine-tuning procedures, we will consider
such a KL-constrained reward optimization as our fine-tuning goal:

max
πθ

Ex∼Dpref,y∼πθ(·|x)[r
∗(x, y)]− βDKL[πθ(·|x)||πref(·|x)] (3)

The regularizer, weighted by β, controls the deviation of π from πref under the reverse KL divergence.

Reward model training: In order to fine-tune an LLM policy πθ(y|x), Eq. (1) provides a convenient
way to learn a reward model either explicitly (i.e., by fitting a parametric reward model rφ(x, y))
or implicitly (i.e., via direct preference optimization (DPO) (10) or IPO (7), that re-purposes the
log-likelihood log πθ(y|x) of the policy to represent the reward rθ(x, y)). Explicit reward models are
trained using the following classification objective:

max
φ

E(x,yw,yl)∼Dpref [log σ(rφ(x, yw)− rφ(x, yl))] (4)

where σ is the logistic function. Contrastive learning objectives on the other hand repurposed
log πθ(y|x) as the implicit reward rθ(x, y):

rθ(x, y) = β[log πθ(y|x)− log πref(y|x)] (5)

In (10), the constrained RL problem has been reformulated as a supervised preference classification
problem on human preference data. More formally, the DPO loss is:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(6)

where x is the prompt, yw is the preferred responses, yl is the dispreferred responses, πθ is the policy
that is being optimized and πref is the reference policy.

We used the loss in equation (6) on this stage to further finetune the obtained model from SFT.

3.3 Extension of performance using GenRM (Generative Reward Modeling)

The paper[(11)] shows that GenRM can seamlessly integrates reward modeling, which distinguishes
between correct and incorrect solutions, with SFT for generating correct solutions. This can be done
by simply changing the data mixture in the SFT loss (1) to include both verification and generation
tasks. Given a verification dataset Dverify, which can be DDirect or DCoT (discussed below) of problems-
solution pairs with correctness tokens (optionally with CoT rationales), GenRM minimizes the loss:

LGenRM(θ,Dverify) = LSFT(θ,Dverify) + λLSFT(θ,Dcorrect) (7)

3

where λ > 0 is a hyperparameter that controls the mixture ratio between verification (Dverify) and
generating correct solutions (Dcorrect). This unified training can improve verifier and generation
performance via positive transfer between these two related tasks: how to generate a correct solution,
and whether a solution is correct. By default, we train GenRM verifiers using the unified loss in (7).

Authors show that we can generate intermediate reasoning steps or critique (CoT) before making a
decision about the solution correctness, which may identify subtle reasoning errors missed by direct
verifiers. To train CoT verifiers, we can minimize the SFT loss LGenRM on the dataset DCoT containing
problem-solution pairs as inputs, and corresponding verification rationales vCoT appended with a final
question I and ‘Yes’ or ‘No’ token as targets:

DCoT = {(x, y+, ICoT), (vCoT, I, ‘Yes’)} ∪ {(x, y−, ICoT), (vCoT, I, ‘No’)} (8)

where ICoT = ‘Let’s verify step by step.’. Notably, these rationales can either be human or LLM-
generated, both of which we explore in this work. During inference, we first generate a CoT rationale
vCoT from GenRM-CoT and then use the probability of ‘Yes’ for assigning the correctness score:

rCoT(x, y) = pθ(Yes|x, y, ICoT, vCoT, I), where vCoT ∼ pθ(·|x, y, ICoT) (9)

Compared to (4) that only uses the instruction I to produce a score, the above CoT reward additionally
conditions on ICoT and self-generated vCoT before getting a score via instruction I .

Inference-time compute for CoT verifier. When sampling verification CoTs, the generative verifier
can use different reasoning paths and yield different correctness probabilities for the same problem-
solution pair. As such, we would like to marginalize out these reasoning paths to select the most
consistent correctness answer (Wang et al., 2022). To do so, we use majority voting where we first
generate K verification CoT rationales, and average the CoT-verifier score for these rationales:

rMajV@K(x, y) =
1

K

K∑
i=1

pθ

(
Yes|x, y, ICoT, v

(i)
CoT, I

)
, where v

(i)
CoT ∼ pθ(·|x, y, ICoT) (10)

Modifications on top of original work: We refined the inference time compute for GenRM-CoT as
a modification to address the limitation of using fixed number of rationales even when the variance
of the score was low. The current paper uses a set number of rationales for sampling and averaging,
whereas we capped it within a set number of Kmin and Kmax based on the variability in the token
prediction probability. Specifically, setting Kmin to 8 and Kmax to 32 and increasing from Kmin to
Kmax only if the variance in the predicted probability of the ‘Yes’ token remains above a predefined
threshold. Moreover, instead of drawing one sample at a time, we drew 8 samples since in FP8
training, the requirement for generation was a matrix with a height of 8.

This above adaptive computation mechanism would allow the model to spend more compute on
ambiguous cases while avoiding unnecessary sampling on confidently classifiable examples, thus
reducing average inference latency.

We define the threshold τ as an empirical value indicating uncertainty, and in our experiments we
consider τ = 0.05. That is, if

Var(p(1)Yes, . . . , p
(K)
Yes) < τ,

we stop early and use the current estimate. This adaptive compute mechanism aims to reduce average
inference cost while maintaining accuracy, particularly by allocating more compute to borderline or
ambiguous cases.

4 Experimental Setup

Our experimental set-up can be split into four steps

4.1 Dataset preparation

• SFT Dataset Preparation: In this step, we used the Huggingface Smoltalk dataset
(HuggingFaceTB/smol-smoltalk). This is a multi-turn chat response dataset between
users and assistant. We implemented a masking strategy which can be extended for both
single and multi-turn chats to mask out labels for user turns. We also applied sampling
strategies to help us quickly debug the training and validation process (example, using a
subset of dataset for training).

4

• DPO data preparation: We used HuggingFaceH4/ultrafeedback_binarized dataset
which included a prompt and two responses (one preferred over another). We applied similar
masking and sampling strategies here.

• Extension using GenRM: In this stage we used the dataset provided by the original authors(1)
and transformed that to a HF repo here (psr-ai/genrm-cot). We used the new loss
function for training on this dataset.

4.2 Training and inference on validation

We used Pytorch lighting and huggingface’s in-built tokenizer build our training pipeline. We
generally used 98% of the dataset on both Smoltalk and Ultrafeedback to train our SFT and DPO
stages. We implemented a mixed precision training method where we initially started with bf16 in
order to save memory and be able to accommodate larger set of tokens. But later on moved on to
Fp8 based training using nvidia’s transformer-engine library on H100. We also used a Distributed
Data Parallel (DDP) strategy by using Ray.io for all 3 methods. For DPO we trained with different
beta values to see if we observe increased accuracy. For extension we used the DPO model as the
reference model against which training process is optimizing.

For validation, we used multiple metrics, such as eval edit distance, evaluation loss, winrate and
verifier scores. These were computed based on the experimental setup and the training type. Our
baseline model was Qwen/Qwen2.5-0.5B and we expected our model to improve on the different
mentioned metrics with time.

4.3 Uploading model to HuggingFace

During the training pipeline, the models are saved as checkpoints in AWS S3. We created the pipeline
to move the models from a given checkpoint to HuggingFace repository as the next step.

4.4 Batch inference pipeline and win-rate calculation

In this stage we used VLLM to efficiently run inference for prompts to create output for
the leaderboard submissions. Additionally we used Llama 3.1 Nemotron 70B Reward Model
(https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward) using OpenAI API for win-rate
calculation.

5 Results

5.1 SFT - Supervised finetuning

5.1.1 Precision: bf16-true

Our first metrics were average train loss for all batches and validation edit distance for supervised
finetuning on the HuggingFaceTB/smol-smoltalk but on a small subset of data (source being
smol-constraints). This is only 7.5% of the dataset. We chose validation edit distance to measure
the edit distance between the model’s output and the saved output in the validation set. These
measures are reported below and please find the log files here(6):

We quickly realized two things:

• If 1 epoch of 7.5% of dataset takes 1.5 hours, we would need to speed up the training using
strategies like DDP (since our model was able to fit in one GPU with batch size of 1) and
lower precision training like fp8

• Validation edit distance will not be a good measure as a validation metric because the
model’s output may not be exactly same as the test outputs, as they would be semantically
similar but not exactly same

5

Figure 2: Train loss over time Figure 3: Validation edit distance over time

5.1.2 Precision: FP8 (transformer-engine) with DDP strategy

In order to address the first point of our findings in 5.1.1, the next step was to implement SFT with
FP8 precision to decrease the training time along with performing distributed data parallel (DDP).
Below are the training metrics for fp8 training and please find the log files on the drive link(3):

Figure 4: Train loss over time for FP8

Looking at the graph, we can see that using the strategies like DDP and FP8 training, we were able
to perform a single epoch over 100% of the dataset in 4 hours. This minimum 7 times decrease in
the training time (assuming that distribution of smol-constraints is same as the entire dataset).
We used the checkpoints that we created in this training as the final SFT model that we uploaded to
HuggingFace (using the script upload_to_hub.py in our repository).

Final uploaded model after this section: psr-ai/Qwen2.5-0.5B-SFT

5.2 DPO - Direct Preference Optimization

5.2.1 Beta: 1.0 vs Beta: 2.0, Precision FP8 and DDP strategy

We used two different values of Beta for our Direct Preferences Optimizations. We used
HuggingFaceH4/ultrafeedback_binarized and trained the finetuned model from the previ-
ous section as the base model on 98 percentile of the dataset (based on string length). Moving ahead,
we started using evaluation loss as a metric for comparison for more semantic comparisons of the
outputs. Below are the comparisons of both on average train loss and average validation loss, and log
file for beta 2 training can be found here (2).

Between the two betas, we went ahead with beta 1.0 because the average validation loss was lesser in
this case.

6

Figure 5: Train loss over time Figure 6: Validation loss over time

Final uploaded model after this section: psr-ai/Qwen2.5-0.5B-SFT-DPO

5.3 Extension - GenRM

5.3.1 Lambda 0.1 with precision FP8 and DDP strategy

Proceeding with the extension, we finetuned the model we obtained from the previous section on the
98 percentile of psr-ai/genrm-cot dataset based on the loss function described in the methods.
Below are the training and evaluation metrics for the extension training, and please find the log files
here(5):

Figure 7: Train loss over time Figure 8: Validation loss over time

We are also computing verifier scores per epoch. The metrics for validation verifier score are given in
Figure 8.

Figure 9: Validation verifier score

We observed here that the average validation verifier score decreased by 0.01 in the second step. This
could be possible because since we are not training on the validation dataset so the verifier score
decreased slightly. This could also be because we are also using do_sample=True, there is some
stochasticity while calculating the validation verifier score. But for the train loss, we do observe that
it is decreasing with time.

7

Table 1: Performance Comparison
Method Winrate (Instruct) Leaderboard (Milestone) Leaderboard (RL + Extension)

SFT 38% 75% N/A
DPO 45% 81.5% 15.75%
Extension (GenRM) 39% N/A 12.75%

5.3.2 Lambda 0.01 with FP8 precision and DDP strategy

We also experimented on a smaller lambda (0.01) as a part of this extension to check if we could get
better results. Below are the metrics for the same, and please find the log files here(4):

Figure 10: Train loss over time Figure 11: Validation loss over time

We were also computing verifier scores per epoch. Below are the metrics for the same:

Figure 12: Validation verifier score

We observed here that the average validation verifier score was less in this lambda as compared to
lambda 0.1, hence we moved ahead with finalizing the lambda 0.1 model.

Final uploaded model after this section: psr-ai/Qwen2.5-0.5B-SFT-DPO-Extension

5.4 Quantitative Evaluation

Along with the above quantitative evaluations on different experiments, we submitted the outputs
from our model to the leaderboard on different training steps to compare the winrate for the generated
models. We also wrote down implementation of winrate to compare a set of prompts with the
Qwen2.5-0.5B-Instruct model and the given model.

Our observation was that the winrate increased after DPO against the Qwen2.5-0.5B-Instruct by
7-8 percent as described in Table 1. But the winrate decreased by similar number after running the
extension model against the Qwen2.5-0.5B-Instruct model. This is because given our lambda,
the model has become skewed towards outputting answer separately assuming that the prompt is
asking for a validation output.

8

5.5 Qualitative Analysis

When performing SFT and DPO, the results against the Qwen2.5-0.5B-Instruct model are evident.
We were able to get close to 40 to 45% winrate, asserting the fact that the training is going as expected
and our metrics are improving. But moving onto the extension, our winrate suddenly dropped. We
could attribute this to the model generating assertions on the final output by repeating the answers.
For example, analyzing one of the prompt and responses which outputs a preferred answer:

Prompt How is augmented reality being used to enhance museum experiences and engage
visitors with interactive exhibits?

Response Augmented Reality (AR) is being used to enhance museum experiences in several ways.
For instance, virtual reality (VR) is being used to create immersive experiences that
allow visitors to explore and interact with the exhibits in a way that is both engaging
and interactive. AR overlays digital content onto the real world, creating a more lifelike
and interactive experience. This can include interactive exhibits, virtual tours, and
3D models of objects.reality is also being used to create 3D models of objects and
environments, allowing visitors to explore and interact with them in a more immersive
way. This can include virtual reality experiences that allow visitors to explore and
interact with objects in a way that is both realistic and engaging.addition, AR is being
used to create interactive exhibits that allow visitors to explore and interact with the
exhibits in a way that is both engaging and interactive. For instance, visitors can use
AR to scan and interact with objects in the exhibits, or to explore and interact with
digital content that is presented in the exhibits.is also being used to create interactive
exhibits that allow visitors to explore and interact with the exhibits in a way that is both
engaging and interactive. For instance, visitors can use AR to scan and interact with
objects in the exhibits, or to explore and interact with digital content that is presented in
the exhibits., AR is being used to create immersive and interactive experiences that can
engage visitors in new and exciting ways, and can help to increase visitor engagement
and enjoyment of the museum exhibits.

But for another prompt, the model outputs an imperfect answer:

Prompt Tom has $1200 saved for a trip. He spends 1/3 of the money on flights and then 25% of
the remaining money on accommodations. How much money does Tom have left?

Response The amount of money spent on flights is 1200 * 1/3 = 400. The remaining money
after flights is 1200 - 400 = 800. Tom spends 25% of the remaining money on
accommodations, so he spends 800 * 25/100 = 200. The remaining money after
accommodations is 800 - 200 = 600. Tom has 600 left. #### 600 The answer is: 600

We could see that the model has started generating assertions in the form of verifier dataset. This
could be attributed to missing Chain of Thought ability inherently within the model, hence the model
learning to output in the format of verifier datasets instead.

6 Discussion

• Finetuning on H100 with DDP (distributed data parallel) was our standard approach to
decrease the finetuning time. In some cases, this led to a decrease in the training time by 10
folds. This made our training and iterations feasible with different methods

• Intitiating the training with sanity-train parameter combined with train-percentile
to control the training dataset size and making evalutation dataset same as training to overfit
the model on it

• The model after training using direct preference optimization did not seem to have a chain of
thought by default. We checked this by prompting the model with text such as "Let’s verify
this step by step". This is because the model has not trained on chain of thought dataset
hence we did not assume any such strategical outputs by the models on these prompts which
were expected by our extension techniques.

• With ray.io, we were able to create one central cluster and the teammates were able to run
parallel jobs with specific training type, precision, strategy and accelerator type - this helped
us in resource sharing across accounts and cloud providers

9

• We saw that in ray.io, there was no support for private images in Azure along with specifying
the disk os size. This was important because sometimes we were running out of disk space
and we also wanted to decrease the time of spinning up the instances - in order to mediate it,
we patched the ray library locally (patches/azure_vm_template.json in the codebase)
and also opened a PR on the ray.io GitHub library which got merged in 8 days (9)

7 Conclusion

We can conclude that starting with a given model, SFT increases the quality of the responses from the
model by decreasing the cross entropy loss. This is said to be an imitation learning problem, where
we know the expected action (output tokens) by our expert policy and we want our model’s weights
to align to that strategy. Adding DPO (direct preference optimization) increased the response quality
and winrate by a 7 to 8 percent against the Instruct model in a small number of epochs. Hence, DPO
is effective in making the model direct towards chosen outputs against the rejected outputs.

Finally, our extension was based on GenRM CoT strategy. It asks the model to come up with a chain
of thought to verify a correct solution as correct and an incorrect solution as incorrect. We observed
that the winrate decreased slightly and we could attribute this to missing chain of thought strategy by
the SFT+DPO model inherently hence the outputs weren’t very good. The model started memorizing
the format of the the responses using the verification dataset during this training.

8 Team Contributions

• Anirban Chatterjee: DPO, Winrate and eval calculations

• Prabhjot Singh Rai: SFT with FP8, DPO and Extension Implementation (dataset prepara-
tion and loss implementation)

Changes from Proposal In the proposal, specifically in the extension, we had mentioned that we
would like to sample new inferences only if the variance was greater than 0.01, we increased this
hyperparameter to 0.05 and also, since on FP8 the minimum height required was 8 on inference, we
sampled 8 at one time instead of just one since we had the bandwidth to do so. Hence, minimum was
8 and then we would go on from 8 to 32 on a step size of 8 instead of 1 and calculate variance on each
step. Also, due to time constraint, we were not able to perform winrate testing on the GSM8K dataset,
but we were able to implement winrate on the given prompt dataset or using –calculate-win-rate
on the validation dataset as well.

References
[1] [n. d.]. GitHub repo for release of GenRM CoT dataset. https://github.com/genrm-star/

genrm-critiques

[2] [n. d.]. Logfile for DPO with Beta 2. https://drive.google.com/file/d/
14F6ObgIqfxbuo1GHTFE5-JVrtoF3EWU8/view?usp=drive_link

[3] [n. d.]. Logfile for SFT. https://drive.google.com/file/d/
1TPzSLbRPc4WUH3KMOAX1-nY_pv6gX_kn/view?usp=drive_link

[4] [n. d.]. Logfile for sft verifier training with lambda 0.01. https://drive.google.com/
file/d/1QPB9e7xMsYBA2gYPo7UkA4eL9kX-laO7/view?usp=drive_link

[5] [n. d.]. Logfile for sft verifier training with lambda 0.1. https://drive.google.com/file/
d/1ABQ4QsJpqfOLTVXw57UZPWTJ3JS0fxZf/view?usp=drive_link

[6] [n. d.]. Logfile for SFT with smol-constraint dataset. https://drive.google.com/file/
d/1ztY8HusyOl-B-xlK5b1epVEf8LD2Ydsu/view?usp=drive_link

[7] Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello,
Michal Valko, and Rémi Munos. 2023. A General Theoretical Paradigm to Understand Learning
from Human Preferences. arXiv:2310.12036 [cs.AI] https://arxiv.org/abs/2310.12036

10

https://github.com/genrm-star/genrm-critiques
https://github.com/genrm-star/genrm-critiques
https://drive.google.com/file/d/14F6ObgIqfxbuo1GHTFE5-JVrtoF3EWU8/view?usp=drive_link
https://drive.google.com/file/d/14F6ObgIqfxbuo1GHTFE5-JVrtoF3EWU8/view?usp=drive_link
https://drive.google.com/file/d/1TPzSLbRPc4WUH3KMOAX1-nY_pv6gX_kn/view?usp=drive_link
https://drive.google.com/file/d/1TPzSLbRPc4WUH3KMOAX1-nY_pv6gX_kn/view?usp=drive_link
https://drive.google.com/file/d/1QPB9e7xMsYBA2gYPo7UkA4eL9kX-laO7/view?usp=drive_link
https://drive.google.com/file/d/1QPB9e7xMsYBA2gYPo7UkA4eL9kX-laO7/view?usp=drive_link
https://drive.google.com/file/d/1ABQ4QsJpqfOLTVXw57UZPWTJ3JS0fxZf/view?usp=drive_link
https://drive.google.com/file/d/1ABQ4QsJpqfOLTVXw57UZPWTJ3JS0fxZf/view?usp=drive_link
https://drive.google.com/file/d/1ztY8HusyOl-B-xlK5b1epVEf8LD2Ydsu/view?usp=drive_link
https://drive.google.com/file/d/1ztY8HusyOl-B-xlK5b1epVEf8LD2Ydsu/view?usp=drive_link
https://arxiv.org/abs/2310.12036

[8] Ralph Allan Bradley and Milton E. Terry. 1952. Rank Analysis of Incomplete Block Designs:
I. The Method of Paired Comparisons. Biometrika 39, 3/4 (1952), 324–345. http://www.
jstor.org/stable/2334029

[9] Ray Project Contributors. 2024. Add Image ID and Size Parameters to Azure node provider.
https://github.com/ray-project/ray/pull/53298. https://github.com/ray-project/ray/
pull/53298 GitHub Pull Request #53298.

[10] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. 2024. Direct Preference Optimization: Your Language Model is Secretly a
Reward Model. arXiv:2305.18290 [cs.LG] https://arxiv.org/abs/2305.18290

[11] Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and
Rishabh Agarwal. 2025. Generative Verifiers: Reward Modeling as Next-Token Prediction.
arXiv:2408.15240 [cs.LG] https://arxiv.org/abs/2408.15240

A Additional Experiments

We also performed some additional experiments, such as testing out our implementations using
–sanity-train parameter. This would make the train and validation dataset as the same so that
we are able to overfit on the training dataset and evaluate against the same dataset and check our
implementations. Moreoever, once the sanity training was done, we were able to control the input
dataset using –train-percentile and –test-percentile inputs. For example, for the extension
part, we first tested out on 0.1% of the training data (psr-ai/genrm-cot having total 523K rows)
and the training and validation losses are reported below:

Figure 13: Train loss over time Figure 14: Validation loss over time

Once we confirmed that our training and validation losses are decreasing, we were ready to perform
the training on the extensive dataset (98%).

Overall, for testing out the code, we ran many other experiments. Please follow the following steps
on the terminal to checkout different experiments (for extension):

export AWS_ACCESS_KEY_ID=AKIA2GK3E4AHHON3EF3X
export AWS_SECRET_ACCESS_KEY=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
tensorboard --logdir="s3://rl-sf/SFT-verifier-final"

While testing out SFT-verfier implementation, please use the rl-sf bucket and sft-verfier folder

export AWS_ACCESS_KEY_ID=AKIA2GK3E4AHHON3EF3X
export AWS_SECRET_ACCESS_KEY=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
tensorboard --logdir="s3://rl-sf/sft-verifier"

If you want to checkout the DPO experiments, please use the bucket rl-sf and folder DPO:

export AWS_ACCESS_KEY_ID=AKIA2GK3E4AHHON3EF3X
export AWS_SECRET_ACCESS_KEY=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
tensorboard --logdir="s3://rl-sf/DPO"

and similarly for SFT:

11

http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029
https://github.com/ray-project/ray/pull/53298
https://github.com/ray-project/ray/pull/53298
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2408.15240

export AWS_ACCESS_KEY_ID=AKIA2GK3E4AHHON3EF3X
export AWS_SECRET_ACCESS_KEY=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
tensorboard --logdir="s3://rl-sf/SFT"

B Implementation Details

Please use the requirements.txt to install the dependencies.

B.1 Autoscaling

As mentioned before, we have used ray.io for autoscaling compute. We created the cluster files for both
AWS and Azure, both of them are located in hippo folder, example hippo/aws.yaml for AWS com-
pute and hippo/azure.yaml for Azure compute. The commands ray up hippo/azure.yaml
helped us bring up the instances with the autoscaler configuration - this file contains the different
compute instances like A100, H100, T4 etc. The file patches/azure-vm-template.json was
used as the patch since the PR we got merged into ray.io was not deployed yet, hence we manually
patch it as specified in hippo/azure.yaml. We use the ray dashboard command to port forward
from the cluster’s driver instance to local and we were able to view the dashboard locally. Here’s how
the dashboard looks like:

Figure 15: Ray dashboard to share experiments

B.2 Dataset preparation

B.2.1 Batch Dataset Preparation

Although for all the datasets we did not need to perform a separate batch operation of dataset
preparation and storing them (we perform in-memory collation using collate_functions.py file),
we had to do it for the extension (GenRM-CoT) since the chain of thought and verification datasets
were part of the github repo. For this, please refer to extension/data_preparation.py file and
the example run we did was:

HF_TOKEN=[masked] python extension/data_preparation.py --path
/Users/psr/GitHub/genrm-star/genrm-critiques/critiques --repo
psr-ai/genrm-cot

where the –path represents the local path to the GitHub repo.

12

B.2.2 In-memory Dataset Collation

We have used the collate_functions.py to map the dataset before sending it to the training or
validation methods inside the module. Moreover, we also created a wrapper over the huggingface
dataset called custom_dataset.py file and classname CustomDataset while filters and maps
based on the given percentile of the data.

B.3 Training

B.3.1 Entrypoint

Once we have port forwarded, we can submit the jobs to this cluster and therefore we use ray job
submit to submit jobs to this cluster. The training file is used to submit the jobs. Here is the extensive
explanation of each of the arguments to the train.py script:
> python train.py --help
usage: train.py [-h] [--use-ray | --no-use-ray] [--model-name MODEL_NAME]

[--dataset-name DATASET_NAME]
[--training-type {sft,dpo,bt,sft_verifier}] [--storage-path

STORAGE_PATH] [--name NAME]
[--num-workers NUM_WORKERS] [--accelerator-type ACCELERATOR_TYPE]
[--placement-strategy PLACEMENT_STRATEGY] [--seed SEED] [--max-epochs

MAX_EPOCHS] [--use-gpu]
[--batch-size BATCH_SIZE] [--lr LR] [--resume-from-checkpoint

RESUME_FROM_CHECKPOINT]
[--accumulate-grad-batches ACCUMULATE_GRAD_BATCHES] [--strategy

STRATEGY] [--precision PRECISION]
[--mode MODE] [--check-val-every-n-epoch CHECK_VAL_EVERY_N_EPOCH]

[--ckpt-to-keep CKPT_TO_KEEP]
[--checkpoint-frequency CHECKPOINT_FREQUENCY] [--state-dict-type

STATE_DICT_TYPE]
[--dataset-source DATASET_SOURCE] [--verbose | --no-verbose]
[--train-dataset-length TRAIN_DATASET_LENGTH] [--test-dataset-length

TEST_DATASET_LENGTH]
[--num-sanity-val-steps NUM_SANITY_VAL_STEPS] [--sanity-train |

--no-sanity-train]
[--dataset-random-sample | --no-dataset-random-sample] [--beta BETA]

[--roundoff ROUNDOFF]
[--train-percentile TRAIN_PERCENTILE] [--test-percentile TEST_PERCENTILE]
[--calculate-win-rate | --no-calculate-win-rate] [--lambda LAMBDA]

options:
-h, --help show this help message and exit
--use-ray, --no-use-ray
--model-name MODEL_NAME

Model name or path to the model
--dataset-name DATASET_NAME

Path to the dataset
--training-type {sft,dpo,bt,sft_verifier}

Type of training to perform: sft, dpo or bt (Bradley-Terry reward
training)

--storage-path STORAGE_PATH
Path where to store ray results and checkpoints

--name NAME Name of the experiment
--num-workers NUM_WORKERS
--accelerator-type ACCELERATOR_TYPE

Type of accelerator to use
--placement-strategy PLACEMENT_STRATEGY

Placement strategy for Ray
--seed SEED
--max-epochs MAX_EPOCHS
--use-gpu Use GPU for training
--batch-size BATCH_SIZE

Batch size
--lr LR learning rate

13

--resume-from-checkpoint RESUME_FROM_CHECKPOINT
Specify a checkpoint to resume from

--accumulate-grad-batches ACCUMULATE_GRAD_BATCHES
Accumulate gradient batches

--strategy STRATEGY Type of strategy
--precision PRECISION

Precision
--mode MODE train, test
--check-val-every-n-epoch CHECK_VAL_EVERY_N_EPOCH
--ckpt-to-keep CKPT_TO_KEEP
--checkpoint-frequency CHECKPOINT_FREQUENCY
--state-dict-type STATE_DICT_TYPE
--dataset-source DATASET_SOURCE

Source of the dataset to use
--verbose, --no-verbose
--train-dataset-length TRAIN_DATASET_LENGTH

Length of the dataset to use
--test-dataset-length TEST_DATASET_LENGTH

Length of the dataset to use
--num-sanity-val-steps NUM_SANITY_VAL_STEPS

Number of sanity val steps
--sanity-train, --no-sanity-train

Run a sanity check training
--dataset-random-sample, --no-dataset-random-sample

Randomly sample the dataset
--beta BETA Beta value for DPO training
--roundoff ROUNDOFF Roundoff value for the loss
--train-percentile TRAIN_PERCENTILE

Percentile of the dataset to use for training
--test-percentile TEST_PERCENTILE

Percentile of the dataset to use for testing
--calculate-win-rate, --no-calculate-win-rate

Calculate win rate against a reference model
--lambda LAMBDA Lambda value for SFT verifier training

B.3.2 Example runs

Some of the example jobs can be submitted as follows, for example, for a finetuning job which uses 2
H100 GPUs with DDP strategy and training method as sft-verifier, following command would be
used:

ray job submit --no-wait --working-dir . --runtime-env-json ’{"excludes": [".venv",
".git", "milestone-logs"], "env_vars": {"HF_TOKEN": "[masked]",
"AWS_ACCESS_KEY_ID": "[masked]", "AWS_SECRET_ACCESS_KEY": "[masked]",
"NVIDIA_API_KEY":"[masked]"}}’ -- python train.py --use-ray --name
"SFT-verifier-final" --num-workers 2 --strategy ddp --storage-path
"s3://rl-sf" --precision transformer-engine --batch-size 1
--num-sanity-val-steps 0 --checkpoint-frequency 1 --check-val-every-n-epoch 1
--accumulate-grad-batches 1 --accelerator-type H100 --train-percentile 98
--test-percentile 98 --training-type sft_verifier --model-name
psr-ai/qwen2.5-0.5B-SFT-DPO --no-verbose --roundoff 4 --lambda 0.01

Another example, DPO with ddp on 4 T4 instances with bfloat-16 precision would be as follows

ray job submit --no-wait --working-dir . --runtime-env-json ’{"excludes": [".venv",
".git", "milestone-logs"], "env_vars": {"HF_TOKEN": "[masked]",
"AWS_ACCESS_KEY_ID": "[masked]", "AWS_SECRET_ACCESS_KEY": "[masked]",
"NVIDIA_API_KEY":"[masked]"}}’ -- python train.py --use-ray --name "DPO"
--num-workers 4 --strategy ddp --storage-path "s3://rl-sf" --precision
bf16-true --batch-size 1 --num-sanity-val-steps 0 --checkpoint-frequency 1
--check-val-every-n-epoch 1 --accumulate-grad-batches 1 --accelerator-type
H100 --train-percentile 98 --test-percentile 98 --training-type dpo
--model-name psr-ai/qwen2.5-0.5B-SFT

14

B.3.3 Module

The module.py file contains the pytorch lightning module. It contains the steps for training, valida-
tion and creation of data loaders.

B.3.4 Loss computations

The losses directory consists of the implementations of loss computations for each of the training
methods. Please find the corresponding filename for the loss method.

B.3.5 Metrics

The metrics are emitted to the –storage-path and –name specified in the submitted job. For
example, a job named JOB_A and –storage-path named s3://rl-sf, the tensorboard can be
viewed as:

export AWS_ACCESS_KEY_ID=AKIA2GK3E4AHHON3EF3X
export AWS_SECRET_ACCESS_KEY=3D60Nx4zgeJcwWTpdO+Jww/jpOlplfdxjzeYz3nH
tensorboard --logdir="s3://rl-sf/JOB_A"

If we also want the winrate metrics (for example while tranining over DPO), we also created a
parameter –calculate-win-rate which calculates the winrate for the evaluation dataset against
the original model.

When implementing the extension, we also used verifier score calculations as the output metric. This
function can be found in losses/sft.py and the function is named computeverifierscores.

B.4 Uploading to Hub

We also created a script to upload the model from a checkpoint to
huggingface repository. This script is upload_to_hub.py. An example
command to run this would be:

ray job submit --no-wait --working-dir . --runtime-env-json ’{"excludes":
[".venv", ".git", "milestone-logs"], "env_vars": {"HF_TOKEN": "[masked]",
"AWS_ACCESS_KEY_ID": "[masked]", "AWS_SECRET_ACCESS_KEY": "[masked]"}}’ --
python upload_to_hub.py --checkpoint-path "[path-to-checkpoint]" --repo-id
"[huggingface-repo-id]" --training-type sft_verifier

Here the path to checkpoint can be found in the corresponding log file adn
huggingface repo id is the path to the private repository on huggingface.

15

	Introduction
	Related Work
	Difference from related work

	Method
	Supervised Fine-tuning(SFT)
	Preference optimization using DPO
	Extension of performance using GenRM (Generative Reward Modeling)

	Experimental Setup
	Dataset preparation
	Training and inference on validation
	Uploading model to HuggingFace
	Batch inference pipeline and win-rate calculation

	Results
	SFT - Supervised finetuning
	Precision: bf16-true
	Precision: FP8 (transformer-engine) with DDP strategy

	DPO - Direct Preference Optimization
	Beta: 1.0 vs Beta: 2.0, Precision FP8 and DDP strategy

	Extension - GenRM
	Lambda 0.1 with precision FP8 and DDP strategy
	Lambda 0.01 with FP8 precision and DDP strategy

	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Conclusion
	Team Contributions
	Additional Experiments
	Implementation Details
	Autoscaling
	Dataset preparation
	Batch Dataset Preparation
	In-memory Dataset Collation

	Training
	Entrypoint
	Example runs
	Module
	Loss computations
	Metrics

	Uploading to Hub

